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Abstract:

General variational theorems for the rate problems of rate-de-

pendent finite strain inelasticity, in terms of the appropri-

ate rates of the first and second Piola-Kirchhoff stress ten-

sors, the symmetrized Biot-Lure' stress tensor, and their con-

jugate measures of strain-rate, are discussed. Certain new

rate-complementary-energy principles, involving the rate of

spin and the rate of the symmetrized Biot-Lure' stress tensor

as variables, are stated for finite strain analysis of rate-

sensitive materials, such as those exhibiting elasto-visco-

plastic and creep behavior. Uniqueness and stability criteria

for those inelastic solids, using the finite element counter-

parts of the new complementary energy rate principles, are

discussed.Computational studies, using the complementary ener-

gy methods, discussed herein include: (i) bifurcation neck-

ing and post-buckling analyses of initially perfect elasto-

plastic bars, and (if) post-buckling and large-deformation

analyses of thin elastic plates under inplane compression and

transverse bending loads.

Introduction:

The topic of rate (incremental), multi-field, variational

principles, in general, and the rate complementary energy

principles, in particular, and the corresponding finite ele-

ment methods, for finite strain analysis of compressible non-

linear-elastic solids were discussed in detail by Atluri and

Murakawa [1]. Also discussed in [i] were the contributions of

Koiter, Zubov, and Fraeijs de Veubeke, dealing with the sub-
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Current address: Hitachi-Co., Japan.



ject of complementary energy principles, governing the total

deformations of semi-linear and/or nonlinear compressible iso-

tropic elastic materials. It was shown in (1], that the con-

cept of treating the angular momentum balance condition as an

a posteriori constraint through a complementary energy princi-

ple involving the symmetrized Biot-stress (or what is also re-

ferred to as the symmetrized Lure'-stress or the Jaumann-

stress) as well as the orthogonal tensor of rigid rotation, as

variables, as first introduced by F. de Veubeke, has certain

fundamentally novel features that makes it attractive for

practical application.

The ideas of discretizing the angular momentum balance condi-

tions through a complementary energy principle has been ex-

tended by the authors in (M) the incremental (rate) analysis

of finite strains in compressible as well as incompressible

nonlinear elastic materials [2-4], (ii) the rate problems of

classical (rate-independent) finite strain, elastQ-plasticity

[5-9], and (iii) nonlinear stability and post-bifurcation

analysis of semilinear isotropic elastic beams [10].

In the present paper the authors' earlier work, [2-101, is ex-

tended to the cases of finite strain analyses of materials

with rate-sensitive behavior such as elasto-viscoplasticity

and creep, and post-buckling and large-deformation behavior of

structural members such as plates and shells, undergoing large

rotations and large stretches.

The summary of the topics presented in the following is: (i)

a discussion of general (multi-field) variational principles,

with emphasis on complementary energy, in terms of alternate

stress-rates and conjugate measures of strain-rate, for rate-

sensitive inelastic materials, (ii) rate complementary energy

potentials, for the chosen stress-rates, for rate-dependent as

well as rate-independent materials, (iii) criteria for unique-

ness and stability of solutions, (iv) numerical study of neck-

ing of an initially perfect elasto-plastic bar, and (v) numer-

ical study of post-buckling of an axially compressed plate of

semilinear isotropic elastic material, undergoing large rota-

tions, as well that of a thin plate undergoing large displace-

ments due to transverse loading.



PRELIMINARIES:

We use a fixed rectangular cartesian coordinate system, and

employ the notation: (_) denotes a second-order tensor; ()

denotes a fourth-order tensor; (-) implies a vector; a = A.b

implies a. = A..b.; A.b implies a product such that (A.B)i1 31J) T -1)

= AijBjk; A:B = trace (A .B) = AijB..; and u.t = uit. .A parti-

cle in the undeformed body has a position vector x = xae (a=l..3)

where e are unit cartesian bases. The gradient operator V
0

in the undeformed configuration C0 is V0 = (e a /ax a). The po-

sition vector of the particle in the deformed configuration,
Nsay CN, is y = yi~i . The gradient operator in CN is V =

(e.a/ay.). The deformation gradient tensor is F (Vo)T,

such that F = (yi/x). The nonsingular F has the
ist Yi,a

polar-decomposition, F = a.(I+h) where the rotation a is or-

thogonal and the stretch h is symmetric and +ve definite. The

Green-Lagrange strain is g =I1/2(F T.F-I) = 1/2(ee T +eTe)

wheree= (Vo)T , U_

For the present purposes, we introduce the stress measures (i)

the "true" Cauchy stress T; (ii) a weighted tensor, the Kirch-

hoff stress tensor a = JT where J is determinant of matrix

[y. ]; (iii) the first Piola-Kirchhoff stress tensor t; (iv)

the second Piola-Kirchhoff stress tensor s, and (v) the sym-

metr;.zed Biot stress tensor (or what is also often referred to

as the symmetrized Lure', or the Jaumann stress tensor) r. As

discussed in [1,5], and elsewhere, the above stress measures

are related as:

1 1 T 1S= F. t = -F.s.F -

t= s.FT = j(F-I T); s = J(Fl.T.FT) (2)
T. 1

1 t) = 1(s.(I+h) + (I+h).s] (3)

The tensors T, a, s, and r are symmetric,'while t is unsymme-

tric. In the above, F- T = (F-I)T and the superscript T de-

notes a transpose.

RATE FORMULATIONS:

Now, we consider the (incremental) rate analysis of finite

strain problems of an inelastic solid with a rate-sensitive

constitutive law. In doing so, one can choose an arbitrary

reference frame. In practice, however, two choices, one the

so-called total-Lagrangean (TL) and the other, the so-called



updated-Lagrangean (UL) reference frames are appealing. Even-

though the choice of a reference frame does not, per se, af-

fect the theoretical or computational approaches, we discuss

the details of a UL formulation, since the rate consitutive

relations of an inelastic solid depend, naturally, on the cur-

rent state of true stress.

In the UL formulation, the solution variables in the generic

state CN+1 are referred to the configuration of the body in

the immediately preceding state, CN , which is known. In the

UL formulation, one is essentially concerned with an initial

stress problem: the initial "true" stress in CN is the CauchyN
stress T , while the initial displacements in CN as referred

to CN are, obviously, zero. Let yN be the current spatial co-

ordinates of a particle in C . Let N be the gradient operator
N= N N-in CN (ie., V =e.i/ay.) and let A_ be rate of deformation (ve-

locities) from CN We define the rate of displacement gradi-
• ( T 1 N

ent e (V Q) and write A = + ci where 1(9.. = .(./ay. +
N 2 . 31 N

ac/ay)] is the symmetric UL strain-rate and [ = =(aai/ayjj 1N -. )j
-aA i/a y) is the skew-symmetric spin-rate. Let i, and

N N N N
(=- ]:I) ])(where J po/p , P0 and pN being the mass-

densities in C0 and CN, respectively), be the substantial de-

rivatives of the Cauchy and Kirchhoff stresses respectively.

As is well-known, these stress-rates are not objective. Let t,

9, and i represent the appropriate stress rates referred to CN;
5N+l N N+I.

ie., for instance, bAt = sN -T where sN is the second

Piola-Kirchhoff stress in C N+ referred to (and measured per

unit area in) CN. It is shown in [5] that:

N_ N. T /N N N9 = ()-/.-N.eT)/J ;~t = ( - .o (4a,b)

k (_ +tN.w+T..~ ) = + "(T N. +e. TN ) (5a,b)

Unless large elastic deformations of a dilatational nature

have preceded the inelastic straining, one may, without sig-

nificant error, assume that J N_.0.

The equations of linear momentum balance (LMB), angular momen-

tum balance (AMB), compatibility, and traction and displace-

ment boundary conditions (TBC and DBC) in the UL rate formu-

lation can be written as:

LMB: VN. [ + -N. (7N ) + PNi = 0 (or) vN' + pN = 0 (6a,b)



T N TN +T N. N
AMe: s = s; (or) (V AN)T.t + t = T + t (VNC) (7a,b)

or, equivalently,

N N + T N N .T (7c)
+ (7c +t t + .£ + T.)

compatibility:
+ Q N T (or) N= (VNA) + (VN )T (8a,b)

TBC: n*.[A + -N (VN1)] - n*.[ = t at SoN (9)

DBC: =u at SuN (10)

Let us suppose, for the moment, that the consitutive law for a

rate-dependent material can be expressed (as shown later in

this paper) in terms of certain rate-potentials, as:

= 3wla; k = 33TE = (la-c)

We consider the Legendre (contact) transformations of the type:
• s - (i) = S*(s); T:#0(.) =£ ( )

:- k () = Rk*(k) (12a-c)

such that

,*/s= ; A*/ = iak*/la =

As discussed in [1-6], the AMB conditions are embedded in the

structure of f and 0. As shown in [5], the complementary en-

ergy principles, and the Hellinger-Reissner type principles,

involving the stress-rates 9, t, and k are as below. In each

case the functional whose stationary condition is the prin-

ciple in question is given. The respective functionals are,

denoted by it with the subscript C and HR denoting complemen-

tary and Hellinger-RFissner type functionals, respectively.

- = f - N (N a).TI}dv + f -uds
N SUN (13)

(f - ( ) + PN ' + l N: (. 
] _ N T

HR - V ~~ 2~+ . / .,<s /+"_.<-uN,
9s:[(7N ) + (VN) ]dv - ids -f (i-u)ds (14)

SoN SuNf f -
*(t) J -t*(t)dv + t.u ds (15)VN SuN

R('t,) f -*()dv - N + +T:[(u)Tldv + contd.V N



af.(ds -f L. ii) ds (16)

* f +i1N TT
N {+ g.2 :(T.I) -T:Idv + Luds (17)

NN T UN=fv + J- N v-  T
2- N T - [ t V a1] _jt :iLdv

N

-f t. Ads - f t.(C-u) ds (18)
ON UN

In the above VN, SON, and SuN are the volume, prescribed-trac-

tion boundary, and prescribed displacement boundary, respec-

tively, of the solid in CN; and pN and B, are respectively,

the mass-density and rate-of-body-force in CN. The above

functionals are valid, in general, for non-conservative (de-

formation-dependent) surface tractions. If A is the set of

conditions that are satisfied a priori, and B is the set of

those conditions that are satisfied a posteriori *in the vari-

ational principle, for each of the above functionals the sets

A and B are as follows: (i) Eq. (13): Set A(Eqs. 6a, 7a, and

9), set B(Eqs. 8b, and 10) (ii) Eq. (14): Set A (the exist-

ence of S* such that aS*/A = ,-and Eq. 7a), set B(Eqs. 6a,

8b, 9, and 10). (iii) Eq. (17): Set A(Eqs. 6b, 9, the de-

finition of k as in Eq. Sa and that o is skew-symmetric), set

B(Eqs. 7c, 8a, and 10); (iv) Eq. 18: Set A(the definition of

P as in Eq. (5a), and that (i is skew symmetric), set B(6b, 7c,

8a, 9, and 10).

The complementary, and Hellinger-Reissner type principles as

through Eqs. (17) and (18) were first stated by Atluri [5].

The general invalidity of the principles through Eq. (15)

which was alluded to by Hill [11], and Eq. (16), were discus-

sed in [5]. Eventhough, Eqs. (13) and (14), and the attendant

variational principles, may be viewed as being consistent, the

limitations of practical applicability of these are discussed

in [5]. Especially, in the application of Eq. (13), the need

to select a symmetric 9, such that Eq. (6a) (which involved

coupling with ") is satisfied, a priori, is not an altogether

easy proposition. Several interesting ways of satisfying Eq.

(6a), and of application of Eq. (13), were discussed by

Atluri (6,7,121.



However, the complementary principle of Eq. (17), introduced

in [51, has several attractive features for practical appli-

cation: (M) the LMB, Eq. (6b) can be easily satisfied by set-

ting: x = Nxi+tP where i are first-order (once differenti-

able) stress functions (ii) o can be selected to be skew sym-

metric, by setting ij = e kijk where ekij is an alternating

tensor). In general, even in a TL formulation, the constraint
T

= I is easily met by taking c to be a function of the 3

Euler-angles of rigid rotation [4]. In the case of plates and

shells, the concepts of a finite-rotation vector, as discussed

later, may be employed.

The application of the complementary energy principle as

through Eq. (17), and its TL rate counterpart, is illustrated

later in this paper.

RATE POTENTIALS FOR RATE-SENSITIVE MATERIALS:

As discussed in [5], and elsewhere, the principle of object-

ivity is met, in writing the rate constitutive law of the ma-

terial, by postulating the constitutive relation between the

objective strain-rate E and the objective co-rotational (or

also at times referred to as the Zaremba, or the rigid-body or

the Jaumann) rate of Kirchhoff stress, denoted here by 6*. It

is well-known that,

6,= -_ N _N T (19)

Thus, in view of Eqs. (4-5),NN N N_ N.
s=(&,_. - ~ .*)jN L = (6_.- . )/jN

(21)

Thus, if V is the postulated rate potential for 5* such that

V/ = *, we can define:

jNI = a N . ( .); W = (22)

J N + 1N: (6 T.); 30/36 = T (23)
N = -=l

J No V ( 3.i;a/3 (24)

From these, one can establish S*(A), E*(t) and R*(k) as de-

fined in Eqs. (12a-c). Thus, we focus attention on the poten-

tial V.

It is worth noting that for materials with rate-independent

constitutive laws, such as classical elastic-plastic materials



the derivative () is considered to be with respect to a fic-

tition time. However, for rate-sensitive materials, such as

elasto-viscoplastic and creeping materials, the derivative ()

is w.r.t. to natural time.

For rate-independent classical elastic-plastic materials, Hill

[13] presented the postulation:

=Lijk.ij kI - g(Xkl k) (25)

where ijkZ is a +ve definite symmetric (under ij - kl inter-

change) tensor of instantaneous elastic modulii, a = 1 or 0 ac-

cording to whether X kZ kZ is positive or negative, g is a

scalar related to the measure of hardening, and X is a tensor

normal to the interface between elastic and plastic domain in

the kl space. Prandtl-Reuss type rate equations of type (25)

for classical isotropically hardening materials can easily be

derived, formally, to be [5]:

= 2p + X( :I)I - 1 2 (: ')' (26)

(a':a')[6p+2(F o/aw P)]
where, X and p are Lame' constants, a' = a-l/3(a:I)I is devi-

atoric Kirchhoff stress, and the yield-surface is represented

by F = [3J 2 (£')]h - F = 0.

Here Fo=Fo(WP) where WP = fq:Pdt; and J = (i/2)(':').

A rate-sensitive constitutive law of a considerable generality,

as given by Perzyna [14], can be easily written for finite

strains, when an associative flow-rule is used, as:
a

y<a(F)>a (27)

where < > denotes a specific function, such that <0> = O(F)

for F>0, and p=O for F<0. The parameter y is called the

fluidity parameter and a is the general anelastic strain. It

has been shown by Zienkiewicz and Coworkers [15], and Argyris

and Coworkers [16] that classical, rate-independent elasto-

plastic solutions can be obtained from the above theory, when

(M) either y- or (ii) a stationary solution of the visco-

plastic flow is sought. Various forms of were reviewed

by Perzyna [141. For the Hencky-Mises-Huber yield criterion,
one can define F to be:

F = [3J 2 (0)] FOo eq (28)



where j is the equivalent Kirchhoff stress. A simple choiceeq

for f(F) can be:

p(F) = Fn (29)

With Eq. (29), the viscoplastic strain rate as in Eq. (27) can

be seen to correspond to the well-known Norton's power law for

steady-state creep when F0 -0. We now derive rate potentials

AV(=VAt),AW, etc. for the viscoplastic constitutive laws given

by Eqs. (27-29).

Let at times tN and tN+At, the Kirchhoff stresses be a N+At

a N+Aa, respectively, where a is the substantial derivative.

The inelastic strain-rates corresponding to Eqs. (27-29) at

times tN and tN+At, are given, respectively, by:

a a ) yF N(aF/aa) = y(3/2e)(a -oF )no' (30)
NN = eq eq- o0

In the above a' = (qN)1 (ie., superscript N dropped for con-
2 -

venience) and a = (3/2)a':c'. Likewise at a time At later,
eq ~•a ne)- aqAeo

N+ y(3/2)(eq+Aa (a +A F ) n('+Aa') (31)
N ~ q eq eq eq 0 -

By straight forward algebra, it can be shown that,

a a n + n
CN+I N +y(3/2a e q ){-(a e q/ e q ) (a eq-Fo) 0 '(a '-F ) M

+ n(a -F ) n-i } - (32)

eq o - eq

However, it can be easily shown that
Aaq=~ ~/eqAu eq = (3/2) a(' :AoY')/ q (33)

Using (33) in (32) we obtain:

a a -£N + V:Aa (34)
£N+l = -N

wherein the definition of V is apparent. Since Aa can in-

clude the effects of pure spin between tN and tN+l, one can

replace Eq. (34) by:

a - -a + V:Aa* (35)
£N+l =N z -

(

where Ao* = &*At is the corotational increment of Kirchhoff

stress. Now, the corotational rate 6* can be written as:

We L (._a (36):e ~ -

Where L is the tensor of instantaneous elastic moduli.
ze tN+A t

Thus, Au* - L :Ac - L : f "adt (37)~ e - e tf

tn
one may use the approximation,



.a .a + .a t <tt +At (38)
= -N -N+l N--N

when Eqs. (35) and (38) are used, Eq. (37) becomes,

Aa* = L :Ae - AtL : a +WAG*) (39)
z e - Ze -N z~* (39

From which, upon rearranging terms,

AG* = M:(As-Ac ) (40)
Z - a

wherein the definition of M is apparent, and Aa is known and
- a -a

is given by: Ac = At. From Eq. (40) one can immediatelya N
write

1AV = -M Asi Ask - M Ac A (41)
2 ijkk ij kZ. ijkk. aij kZ.(1

From Eq. (41), the potentials AW, AU, and AQ can easily be ob-

tained through Eqs. (22-24).

It is noted that Wang [17] attempted to derive a relation bet-

ween As, Ac, A a, and hence AW directly. However, this deriv-

ation appears to be in error, since, among other reasons, the

transformation between the deviatoric part of s and the devi-

atoric part of T was assumed to be the same as that between s

and T themselves.

All the above developments for the UL rate formulation can be

converted to a TL rate formulation by noting the relations [51:

E = (FN)T. .FN;e = 6.FN; s, = JN FN)-l .A. (N)-T

t' = jN(FN)-l.; r' (1/2) [tN.,+,,T.tNT+t,.,N+ NT.t,T] (42)

where E' is TL rate of Gree-strain, and e', s', t', and r' are
TL rates of e, s, t, -and r respectively. Now a' is subject to

the constraint that a NT.a' is skew-symmetric.

UNIQUENESS & STABILITY CRITERION:

In the present paper, the application of the rate complementary

energy principle as embodied in Eq. (17), or its TL counter-

part, will be used in some computational studies. In the di-

rect application of Eq. (17), the assumed stress field t must

not only satisfy the LMB condition within each element, but

also the traction reciprocity condition at the interelement

boundary, viz., (n*.t) + (n*.t) = 0 at pmN (where + and -,

respectively, indicate the two sides of Pm11 , the interface

between mth and (m+l)th elements in C N). In the present work

this interelement condition is introduced as a postericri con-

straint, through a Lagrange multiplier u at p mN' in the



.~~ ~ ~ ~ ~ ~ ~~~~~~~~~~ -- . ., .- ..=- ...' .r. .....r ..r r 
'  

" . ....... --------- - " .;. . ... . .. . .. .... . L - ..

functional of Eq. (17), thus leading to a 'hybrid' finite ele-

ment method. The thus modified functional is:

)={ [_-. (t) +(1/2) T N T _T.m ~ (c@T. )- .& ]dv
H L VmN

+ f (n*t)uds + f (n*t)uds (43)
umN mN

At the point of bifurcation, or instability, from the concept

of adjacent compatible states, the following criterion can be

shown to hold:

'HS = 0 and 6H = 0 (44)

with the constraints:

VN. = 0; J = ; n

and u= 0 at SumN (45)

In the case of linear pre-buckling states, the above criterion

reduces to an eigen-value problem, with the eigen-value depen-
N

ding on T

EXAMPLE PROBLEMS:

Necking of an Initially Perfect, Plane-Strain, Elastic-

Plastic Bar.

Cowper and Onat [18] examined the above bifurcation necking

problem, for a bar of rigid-plastic work-hardening material,

under uniform tension applied at the ends of the bar. Mises'

yield, and isotropic hardening criteria were used [18]. In

[18] only the eigen-value problem for the applied tension at

which necking would initiate in the bar was treated, but the

phenomenon of post-bifurcation necking was not treated in [18].

L (L) and B (B) are the initial (current) length and width of
N 0

the bar respectively. If y and y are the current cartesian

coordinates of a material particle, the ooundary conditions
N tN

are: (i) at y 0: A t=0; (ii) at Yl=L: fI=+V; t2=0;
N 1 .l - t2= 2t)a yL

(iii) at y2=_(B/2):tl=t2=0.

In the present analysis, the complementary energy formulation

based on the TL rate equivalent of Eq. (17) was used. The

problem parameters used are: (B /L ) = (1/3); ry (yield

stress) = 4x104 psi; the true stress versus logarithmic strain

(ln(l/lo)) curve was assumed to be bilinear, with the two

slopes, E=10 7 psi, and h = 5x10 4 psi. The notation



n = (L-L 0 )L 0 ; is used. The eigen-value solution for n at bi-

furcation-necking for the perfect bar, as obtained in [18]

for the present linear-hardening but rigid-plastic material,

is nc = 0.48.
TOTAL DEGREE OF
FREEDOM 3/2

T/-A 0  Bo E =10

6 q V -0.3
............ f......... 

7,j 4000 0

1.2 . ..................... . H =50000
MAX BI"URCATION 0.62
LOAD POINT

FUNDAMENTAL SOLUTION 0 "'
to - NECKING SOLUTION 8/2 1-48to

Q2 RIGID-PLASTIC

0.1 0.2 03 04 0.5 0.6 FUND)AMEN LUTION
0.2 L-4 ' 0.0 2 04

Figure 1 Figure 2

The variation of total applied load with n is shown in Fig.
C

i, from which it is seen that necking starts at n = 0.482c

(which is i.n excellent agreement with the value of n = 0.48

of [18]). It is also seen that necking starts after the
c

maximum load is attained. The convergence of nc with the

finite element mesh has been reported elsewhere [8,9], with

the mesh as shown in Fig. 2, which is used to obtain the

remainder of the reported results, being the finest mesh

reported in [8]. The variation of the width reduction ra-

tio, (B-B)/B is shown in Fig. 2, from which it is seen that
0

at n = n the width reduction becomes much more pronounced

as compared to the rigid-plastic fundamental solution.

The variation of 6/L (with 6 being defined as the difference
0

of widths at loading edge and the necking.sections, respec-

tively) with n is shown in Fig. 3. The slope of this curve
c

at the beginning of necking, viz, n 
= c = 0.48, was obtained

in an asymptotic analysis in [18]. The present result for

this initial slope is in excellent agreement with [18]. How-

ever as necking develops, the slope (Dri/aS) decreases from

thc initial value at n =c, which appears to be in contra-



diction with the result of McMeeking and Rice [1191. The
c

necked profile of the bar for n > n , are shown in Fig. 4.

7? INITIAL SLOPE -U,/B o

z (COWPER &ONAT?

. =0.3 59.31/a

0 ~FEM. L0=12' 5-1
Bo=457.61 °

- E 7=105 55.36/a< 4-E=0psi
z_ o=40000 psi 0.4 52.86/o
0.2- h =50000 psi

2 6,LOl 4 8 .00/J X2 /L

0 .02 .64 .66 5/Lo . 0.2 0.4 06 0.8 1.0

Figure 3 Figure 4

The necked profiles of the bar, and the progressive develop-

ment of unloaded regions (shaded) are shown in Fig. 5 at

various values of n. Note that unloading begins at the cen-

ter of the loaded face of the bar at n = qc = 0.482. Final-

ly the distribution of Cauchy stresses, T11 (in the direc-

tion of loading) T22 (in the width loading), and T33 (in

the thickness direction of this -plane-strain specimen), at

the neck (y = L/2) are shown in Fig. 6. These results are

in excellent qualitative agreement with those of Needleman
[20] who also analyses the necking and post-necking problem

of an initially perfect cylindrical bar. It is noted that

crIa A: X=59.31 /o
B: X=56.86/or -

2.0- B

1.0. B

X/ B0

Figure 5 Figure 6
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the problem of necking of an elastic-plastic bar, with

initial imperfections, was also analysed by Osias [211,

McMeeking and Rice [19], and Nemat-Nasser and Taya [21].

It is observed that the finite element meshes used in [19-

21] are very much finer than the one used presently. Even-

though a precise mathematical statement as to this appears

impossible, the above comparison of the mesh-sizes appears

to indicate the relative advantages of the present comple-

mentary energy method.

Finite Deformation and Post-Buckling Analyses of a Thin

Plate:

We consider large deformations (large rotations and large

stretches) of a thin plate made of a semi-linear isotropic

material (ie., a material exhibiting a linear relation be-

tween the stretch tensor h and its conjugate stress-measure,

the symmetrized Biot-Lure' or Jaumann tensor r). We invoke

the well-known Kirchhoff-Love type plausible deformation

hypotheses that a normal to the midplane of the initially

flat undeformed plate remains normal to the deformed mid-

plane and that there is no thickness stretch. In order to

derive a consistent complementary energy principle for

this constrained deformation problem, we start with the

general (Hu-Washizu type) variational principle involving

-h, a, u, and t as variables.

By introducing the appropriate approximations to all these

variables, we derive a general variational principle for

the plate problem; from this we proceed to construct a con-

sistent complementary energy prihiciple for the plate prob-

lem. It is shown in [1] that a general functional, for

the three-dimensional finite elasticity, whose stationary

conditions lead to all the appropriate field equations, is

given by:

71(Uh,,,t )  = Vo(W(h) - P 'J. + t T:[(I+vu)T

0

- (I+h)])dv - f t.(u-u)ds -f t.uds (46)
uo Go



where W(h) is the strain energy density per unit of initial

volume V0 , as a function of pure stretch h;p 0 is mass density/

unit initial volume, and 2 are body forces/unit mass.

Let xI, x2 be cartesian coordinates in the mid plane, and x3

normal to the midplane, of the plate. The position vector of

an arbitrary material point in the undeformed plate is x=x.e.

(i=i,...3). Under the present deformation hypotheses, the

position vector of the same particle after deformation is,

- = (Xl+u)e I + (x 2 +u*)e 2 + u~e3 + xN where N is a unit nor-

mal to the deformed midplane. Further, the displacement u*
1

(i=1,2,3) are functions of x and x2 only. Thus the displace-

ment of an arbitrary particle in the plate, is y-x = u~eI +

u~e2 + u~e3 + x3 (N-e3). The base vector at an arbitrary point

in the deformed plate are given by:

aY/3x= (x +u* )ei+N, x -G (a-l,2; i=,2, 3) (47)
a / i,a - -a

a L [/a Ifxiqa3  a .

The deformation gradient is

F (v)T G e + Ne3  (48a)~ - -a-a -- ,2

Further, for the present kinematic hypotheses, we assume the

stretch tensor to be:

h= ha ee8; ha =h [xi) [i=l,...3; a, a=1,2] (48b)

From Eqs. (48a,b) it is seen:

N = F.e3 e 3 = .e 3  (49)

Thus the displacement vector can be written as:

U(x i ) = ut(x)e.+(a-I).e x [i=1,2,3; a=1,2] (50)
I I a-i -- 33

Further, we assume that h (x i ) can be approximated as:aS

h (x.) h* (x ) + x3 xa(x ) [a,8,y=1,2] (51)
aa aa a 3XO6

ie. h = h* + x3X

For the semilinear isotropic material we assume the constitu-

tive law:

r = 2 11h + X(h:I)I (52)



Since, for isotropy, hg, and r are coaxial, Eq.. (3) becomes,

r= (53)

The tensors t and a are assumed to be:

t = t..eiej; c=cije.e. (i,j=1,2,3;] (54)

where, tij = tij (Xlx 2 ,x 3 ); aij = ij (xl'x 2) (55)

Finally, the external forces distributed on the plate are as-

sumed to be specified per unit area on the mid plane of the

plate to be gi = gi(x.)(i = I,..3, a=1,2). When the assumptions

in Eqs. (50-55) are substituted in Eq. (4-6), we find through

atraight-forward algebra, that

'r[ ,h , Xaa' aij' T i', i

f f {W*(h*,x) - 2.u* + 4T:[e e +.u*

0

+ (a.e 3 )e3 - Lx.(I+h)] + AT:((a.e3) e - .X]}ds

[T. (u*u*) + M.< (a e>]c --

u 3 C a (56)

where ~ Tieeei; ~ = M L e e. (a=l,2; i=l,...3), and,

Ti t .dx3 ; M t x3 dx3f 3 3M 3 x 3

and W* = f Wdx3  (57)
-x3

In Eq. (56), so0 is the area of the undeformed midplane, and

Cu and C are the displacement and traction prescribed boun-

daries of s. It is seen that only t i enter into the above

energy expression due to the presently invoked deformation as-

sumptions. The constitutive equations and LMB conditions ob-

tainable from Eq. (57) are:

3W*/3h* R. R and W*/DX = h.t  N (58)

and T =a + = 0 (a=l,2 ; i=l, .. 3) (59)

When Eqs. (58, 59) and the appropriate traction boundary

conditions on T i are satisfied a priori, one can eliminate

from Eq. (56), (L) h* and X through the usual contact trans-

formations and by establishing a complementary energy density

R* such that aR*/DR = h* and DR*/DN = X, (ii) u* through

satisfying (53) a priori. When this is done, we obtain a



complementary energy functional:

R, N) IR*(R,N) +- T- e(, = :[e e +(a.3

T f - -(A( 3-
-s

+ M [(c £e) e])ds- (T.u*+M1.< (a-o-).e3>)dc
+ MT: 23) - -3

~u

- f M.(a-I).e 3dc. (60)

In Eq. (60), a is required to be orthogonal and further a is, as

assumed in Eq. (55), a function only of x1 and x2. Also the

variables R and N in Eq. (60) are assumed to be defined in

terms of , and a as in Eq. (58). To assume an orthogonal

a(xix 2 ), the concept of a finite rotation vector [23] is use-

ful. Let w be the finite angle of rotation around an arbitra-

rily oriented unit vector e in the midplane of the plate. The

finite rotation vector is defined to be:

= (sinw)e (61)

The action of finite rotation Q on a vector V can be written

[23] as the transformation of V to V* as,

V* V + Q x V + [2x(OxV]/2cos2 (W/2) R q.V (62)
2

where a = I + Q x I + [(QxI).(2xI)]/2cos (w/2) (63)

It can be shown that a of Eq. (63) is orthogonal, ie.,
Te = I.

The vector e in Eq. (61) can be written as:

e = e cose + e 2 sine (64)

Thus, the rotation tensor a of Eq. (63) is a function of two

parameters: O(xlx 2 ) and w(xlx 2). The explicit expression

for a can be shown to be:

c=<l-(l-cosw)sin2 O>e 1 1 +< (l-cosw) sinecosO>ele2

+ (sinwsino)e1 23 + (l-cos)sinocos0 2e1

+ <l-(l-cosw)cos2 O>e 2e2 - sinwcosoe 2 23 - sinwsinle 321

+ sinwcose)3 2 + coswe3e3 .

In a Von-Karman type plate theory w is assumed to be moderate-
2

ly large, such that cosw = 1-(w /2) and sin,. = w; while the

angle ) can be assumed to be arbitrary.

Further details of the analysis of large rotations and

stretches of thin plates using the complementary energy method

sketched above, which are omitted here for space reasons, will
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